LED Packaging: The Largest Opportunity For LED Cost Reduction

18/07/2012

Webcast

75 cours Emile Zola, F-69001 Lyon-Villeurbanne, France Tel: +33 472 83 01 80 - Fax: +33 472 83 01 83

Web: http://www.yole.fr

Agenda

- Why Cost Reduction of Packaged LED is Required?
- Key Technology Trends in LED Packaging & Associated Players
- Potential Impact of Cost Reduction on LED Value Chain and Markets
- Conclusion

Why Cost Reduction of Packaged LED is Required?

General Lighting Main Drivers

Upfront Cost

Total Cost of Ownership (TCO)

Upfront Cost

Energy Cost

Maintenance Cost

Comparison of Average Selling Price (ASP) of different technology of lamp All sources are ~ 800 lumens, warm White and tier-1 brand only

Incandescent < \$1

1. Depending on geographical region - Price listed is worldwide average

© 2012 **4**

General Lighting Typical Cost Structure of Lighting Products

LED packages represent nearly 30% to 60% off the total cost of LED-based lighting products (depending on the application targeted).

Source: 2011 DoE Manufacturing Roadmap - Yole Développement

Cost Structure of Packaged LED

Packaging typically accounts for 20% to 50% (~35% in average) of the packaged LED Cost... And represents therefore one of the largest opportunity for cost reduction at the components level...

Source: 2011 Yole Développement

YOLE

Key Technology Trends in LED Packaging & Associated Players

LED Manufacturing Process Flow Back-End Level (From Epiwafer to Packaged LED)

The Path to Cost Reduction

Consensus → Need for a cost reduction of a factor > 10

10 Key Technologies & Research Areas Relative Impact on LED Cost of Ownership at Packaging Level

Details on Die Singulation, Testing & Binning, Substrate Separation, Current Droop and WLP (1/2)

Technology / Research Areas	Description	Cost Reduction Opportunities	Associated Players
Die Singulation	2 different types of process are currently used for LED die singulation (Dicing / Scribing & Breaking) → Critical parameters: Street width / Cutting speed / Cutting yields / Performance	Improving throughput by increasing speed, reducing street width and / or developing new techniques.	JPSA, QMC, ESI, ALSI, Hamamatsu
Testing & Binning	Each die and package is tested and sorted for at least 3 parameters (Luminous Flux / Color / Forward Voltage) → The industry still throws away > 50% of the dies.	Improve testing throughput / accuracy through improvement in visual inspection for assembly defects, electrical & optical testing, sorting and reliability testing.	Shibuya, Han*s Laser, ESI, Autec

Details on Die Singulation, Testing & Binning, Substrate Separation, Current Droop and WLP (2/2)

Technology / Research Areas	Description	Cost Reduction Opportunities	Associated Players
Substrate Separation	Substrate separation technologies are used to bond the epiwafer to a carrier wafer with the desirable properties and removing the initial substrate → Development of vertical LED	Improving performance of LEDs by accessing to new structure more efficient in terms of light extraction.	JPSA, Ushio, QMC, NTT
Current Droop	Current droop consists in a decrease of LED efficiency observed when the current density is increased beyond a certain threshold → Various explanations have been suggested but a consensus is yet to be found.	Improving performance of LED by being able to develop 100% droop free LED.	/

Details on Phosphors (1/2)

How to make white light?

Key requirements:

- **Excitation and emission wavelength.**
- Conversion efficiency.
- Cost.
- **Intellectual Property.**
- Stability.
- Compatibility with encapsulation material.

Details on Phosphors (2/2)

Trends:

- Development of new materials (→ Quantum Dots), allowing adjustable size / composition to tune absorption and emission wavelengths, and narrowband emission.
- Development of new Phosphor deposition process (→ Conformal & Preform), allowing highly uniform color, optically homogeneous solid state material, precisely controlled phosphor absorption and tight control of color distribution.
- Development of Remote Phosphors, allowing of phosphor better control temperature (reduced thermal quenching or shifting), good color homogeneity and tighter control and reproducibility.

Conformal Phosphor Deposition **Process**

Preform Phosphor Deposition Process

TFFC LED with Lumiramic™

Remote Phosphor

Details on Wafer Level Packaging (1/2)

Wafer Level Packaging consists in packaging several LEDs at wafer level, rather than assembling the package of each individual unit after wafer dicing.

Packaging wafer

Mirror Solder coating Bump

> Solder / Metallization 1) Wafer level preparation of the package substrate

2) Chip to wafer

Note: in this example, the LED chips are singulated before being positioned onto the package wafer (="Chip to Wafer" packaging)

3) Wafer level interconnect, phosphor deposition, encapsulation, optic

4) LED package separation

Overview of Chip to Wafer LED WLP process Source: Yole Développement

Details on Wafer Level Packaging (2/2)

Benefits:

- Reliability: Monolithic assembly, Reduced wire interconnect and Good CTE match with GaN
- Small form factors, ultra-thin, compact packages.
- Wafer level testing.
- Reduced cost: wafer level manufacturing.

Details on Thermal Management

- For LED, up to 40% of the energy turned into heat...
- ... However, LED DON'T like heat → Decrease of performance (Brightness, Efficiency / Lifetime...).
- Trends:

Details on Encapsulation Materials and Optics

Main requirements:

- Non-yellowing / Durability.
- Good refractive index.
- Good thermo-mechanical properties.
- High and low temperature resistance.
- Good adhesion.
- Non-porous.
- Low cost.

Trends:

Process	Materials
Potting	Acrylics
Printing	Silicon
Molding (Transfer, Injection, compression)	Polycarbonates
Wafer Level Replication	Cyclo Olefin Copolymer

Luxeon K2 Source: Mu Analysis

Lens by compression molding on lead frames Source: ASM Pacific Technology

Gradient Index Flat Glass Wafer

Details on Packaging Design (1/2)

Middle Power

Single Large Die

Multiple Large Die

Small / Medium **COB Array**

Single or Multi "Jumbo Die"

Lumileds

Cree

V Développement

Details on Packaging Design (2/2)

Small Die or Large Chips:

Small Chips Benefits

Higher binning yields / Increased thermal management (distributed heat load) / High Voltage packages

Small Chips Drawbacks

Packaging complexity / Beam shaping / Larger package volume

- Standardization can reduce cost
 - Lighting applications require high power packages, right?...
 - ... Mid-power LED have price decreased dramatically in 2011 under the combined effects of "Package Standardization + Very large volumes + High level of competition (over supply)" → Highly competitive \$/lumen ratio.
- → Middle power packages crossing over from display to lighting!!!

2 Chip 5630 packages Source: Seoul Semiconductor

Potential Impact of Cost Reduction on LED Value Chain and Markets

LED Lighting Value Chain Overview

LED Lighting Value Chain Impact of Cost Reduction - "Display Application" Model

Conclusion

More than x6 cost reduction in packaged LEDs cost? Not easy but achievable through combination of different parameters

- Technology improvements: efficiency + more lumens per chip.
- Manufacturing improvements: dedicated LED tools, automation, inline testing.
- **Economies of scale**
- **Higher integration**
- **Standardization**

LED industry maturing and reaching critical mass to enable development of dedicated tools. Semiconductor "veteran" companies bring additional expertise and "best practices".